Edexcel Maths C1

Topic Questions from Papers

Differentiation

- 2. Given that $y = 6x \frac{4}{x^2}$, $x \ne 0$,
 - (a) find $\frac{dy}{dx}$,

(2)

(b) find $\int y \, dx$.

(3)

- **4.** Given that $y = 2x^2 \frac{6}{x^3}$, $x \ne 0$,
 - (a) find $\frac{dy}{dx}$,

(2)

(b) find $\int y \, dx$.

(3)

Q4

(Total 5 marks)

5. Differentiate with respect to x

	4		_	I
(a)	x^4	+	61	lx.

(3)

_				
_				

10. The curve C with equation y = f(x), $x \ne 0$, passes through the point $(3, 7\frac{1}{2})$.

Given that $f'(x) = 2x + \frac{3}{x^2}$,

(a) find f(x).

(5)

(b) Verify that f(-2) = 5.

(1)

(c) Find an equation for the tangent to C at the point (-2, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Question 10 continued	Leabla	ank
	Q	1
	(Total 10 marks)	

Leave	
blank	

1.	Given	that

 $y = 4x^3 - 1 + 2x^{\frac{1}{2}}, \quad x > 0,$

find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(4)

Q1

(Total 4 marks)

- 3. Given that $y = 3x^2 + 4\sqrt{x}$, x > 0, find
 - (a) $\frac{\mathrm{d}y}{\mathrm{d}x}$,

(2)

(b) $\frac{d^2y}{dx^2}$,

(2)

	^
(c)	y dx

(3)

5. (a) Write $\frac{2\sqrt{x+3}}{x}$ in the form $2x^p+3x^q$ where p and q are constants.

(2)

Given that $y = 5x - 7 + \frac{2\sqrt{x+3}}{x}$, x > 0,

(b) find $\frac{dy}{dx}$, simplifying the coefficient of each term.

- **9.** The curve *C* has equation y = f(x), x > 0, and $f'(x) = 4x 6\sqrt{x} + \frac{8}{x^2}$. Given that the point P(4, 1) lies on C,
 - (a) find f(x) and simplify your answer.

(6)

(b) Find an equation of the normal to C at the point P(4, 1).

Question 9 continued		Leave blank
		Q9
	(Total 10 marks)	

 (a) Differentiate to find f'(x). Given that f'(x) = 15, (b) find the value of x. 		(2)
Given that $f'(x) = 15$,		
		(3)
		(3)
(b) find the value of x.		(3)

9. The curve C has equation $y = kx^3 - x^2 + x - 5$, where k is a constant.

(a) Find $\frac{dy}{dx}$.

(2)

The point *A* with *x*-coordinate $-\frac{1}{2}$ lies on *C*. The tangent to *C* at *A* is parallel to the line with equation 2y - 7x + 1 = 0.

Find

(b) the value of k,

(4)

(c) the value of the y-coordinate of A.

(2)

Question 9 continued	

- **6.** Given that $\frac{2x^2 x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $2x^p x^q$,
 - (a) write down the value of p and the value of q.

(2)

Given that $y = 5x^4 - 3 + \frac{2x^2 - x^{\frac{3}{2}}}{\sqrt{x}}$,

(b) find $\frac{dy}{dx}$, simplifying the coefficient of each term.

11. The curve C has equation

$$y = 9 - 4x - \frac{8}{x}, \quad x > 0.$$

The point *P* on *C* has *x*-coordinate equal to 2.

(a) Show that the equation of the tangent to C at the point P is y = 1 - 2x.

(6)

(b) Find an equation of the normal to C at the point P.

(3)

The tangent at *P* meets the *x*-axis at *A* and the normal at *P* meets the *x*-axis at *B*.

(c) Find the area of triangle *APB*.

Question 11 continued		blar
		Q
	(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	

3. Given that $y = 2x^3 + \frac{3}{x^2}$, $x \ne 0$, find

(a)	dy
(a)	dx

(3)

(b) $\int y \, dx$, simplifying each term.

(3)

9.

$$f(x) = \frac{\left(3 - 4\sqrt{x}\right)^2}{\sqrt{x}}, \quad x > 0$$

(a) Show that $f(x) = 9x^{-\frac{1}{2}} + Ax^{\frac{1}{2}} + B$, where A and B are constants to be found.

(3)

(b) Find f'(x).

(3)

(c) Evaluate f'(9).

(2)

11. The curve C has equation

$$y = x^3 - 2x^2 - x + 9, \quad x > 0$$

The point P has coordinates (2, 7).

(a) Show that P lies on C.

(1)

(b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(5)

The point Q also lies on C.

Given that the tangent to C at Q is perpendicular to the tangent to C at P,

(c) show that the *x*-coordinate of *Q* is $\frac{1}{3}(2+\sqrt{6})$.

(5)

(Total 11 ma	irks)

1. Given that y	$y = x^4 + x^{\frac{1}{3}} + 3$, find	$\frac{\mathrm{d}y}{\mathrm{d}x}$.		(3)

Q1

(Total 3 marks)

6. The curve C has equation

$$y = \frac{(x+3)(x-8)}{x}$$
, $x > 0$

(a) Find $\frac{dy}{dx}$ in its simplest form.

(4)

(b) Find an equation of the tangent to C at the point where x = 2

7.	Given	that

$$y = 8x^3 - 4\sqrt{x} + \frac{3x^2 + 2}{x}, \quad x > 0$$

find $\frac{dy}{dx}$.

(6)

11. The curve C has equation y=f(x), x>0, where

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x - \frac{5}{\sqrt{x}} - 2$$

Given that the point P(4, 5) lies on C, find

(a) f(x),

(5)

(b)	an equation	of the	tangent	to C	at	the	point	Р,	giving	your	answer	in	the	form
	ax + by + c =	0, wher	e a, b and	d c a	re i	nteg	ers.							

		Q
	(Total 9 marks) PER: 75 MARKS	

11. The curve C has equation

$$y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \quad x > 0$$

(a) Find $\frac{dy}{dx}$.

(4)

(b) Show that the point P(4,-8) lies on C.

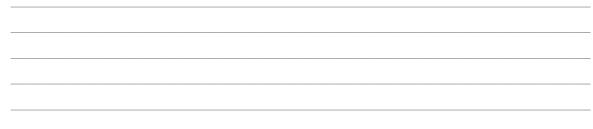
(2)

(c) Find an equation of the normal to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(6)

-			
-			
-			
-	 		
-			
-	 		
-			
-			
-			
-		 	
-			
-			
-			
-			

2.	Given that	$y = 2x^5 + 7 + \frac{1}{x^3}$	$x \neq 0$,	find, i	n their	simplest	form,
		\mathcal{X}^{-}					


(a)	dy
(u)	dx

(3)

(b)	$\int y d$	x
	.] *	

10. The curve C has equation

$$y = (x+1)(x+3)^2$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.

(4)

(b) Show that $\frac{dy}{dx} = 3x^2 + 14x + 15$.

(3)

The point A, with x-coordinate -5, lies on C.

(c) Find the equation of the tangent to C at A, giving your answer in the form y = mx + c, where m and c are constants.

(4)

Another point *B* also lies on *C*. The tangents to *C* at *A* and *B* are parallel.

(d) Find the x-coordinate of B.

(3)

	Q1

4	
/	

$$y = 5x^3 - 6x^{\frac{4}{3}} + 2x - 3$$

(a) Find $\frac{dy}{dx}$ giving each term in its simplest form.

(4)

(h)	Find	d^2y
(0)	1 IIIG	$\mathrm{d}x^2$

(2)

	(4)

7. The point P(4, -1) lies on the curve C with equation y = f(x), x > 0, and

$$f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$$

(a) Find the equation of the tangent to C at the point P, giving your answer in the form y = mx + c, where m and c are integers.

(4)

(b) Find f(x).

11. The curve C has equation

$$y = 2x - 8\sqrt{x} + 5, \quad x \geqslant 0$$

(a) Find $\frac{dy}{dx}$, giving each term in its simplest form.

(3)

The point P on C has x-coordinate equal to $\frac{1}{4}$

(b) Find the equation of the tangent to C at the point P, giving your answer in the form y = ax + b, where a and b are constants.

(4)

The tangent to C at the point Q is parallel to the line with equation 2x - 3y + 18 = 0

(c) Find the coordinates of Q.

(5)

Question 11 continued		Lea
		Q
	(Total 12 marks)	
	(Total 12 marks) TOTAL FOR PAPER: 75 MARKS	
END		

$1. Given y = x^3$	+4x+1, find the value of	$\frac{\mathrm{d}y}{\mathrm{d}x}$ when $x = 3$	(4)
			4 marks)

Q1

2

9.

$$f'(x) = \frac{(3-x^2)^2}{x^2}, \quad x \neq 0$$

(a) Show that

$$f'(x) = 9x^{-2} + A + Bx^2,$$

where A and B are constants to be found.

(3)

(b) Find f''(x).

(2)

Given that the point (-3, 10) lies on the curve with equation y = f(x),

(c) find f(x).

(5)

Question 9 continued	I t	Leave blank
		00
		Q9
	(Total 10 marks)	

11.

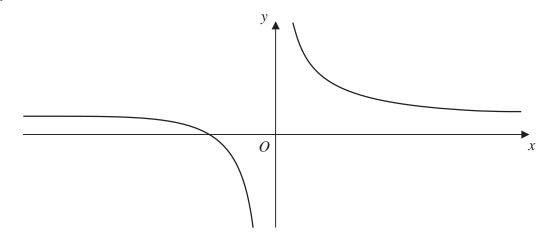


Figure 2

Figure 2 shows a sketch of the curve *H* with equation $y = \frac{3}{x} + 4$, $x \neq 0$.

(a) Give the coordinates of the point where H crosses the x-axis.

(1)

(b) Give the equations of the asymptotes to H.

(2)

(c) Find an equation for the normal to H at the point P(-3, 3).

(5)

This normal crosses the *x*-axis at *A* and the *y*-axis at *B*.

(d) Find the length of the line segment AB. Give your answer as a surd.

(3)

(Total 11 a	
	Q1

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$